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Consideration for QoT Estimation Inaccuracy
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Abstract—In all-optical networks the physical layer impair-
ments accumulate along a lightpath and also vary dynamically,
and a number of impairment aware routing and wavelength
assignment (IA-RWA) techniques have been proposed in order
to mitigate the physical layer impairments and find lightpaths
that meet a required Quality of Transmission (QoT) constraint
predefined by the network operator. However, in order to
compute lightpaths, IA-RWAs typically rely on analytical models,
which cannot be guaranteed to be fully accurate, and hence
acceptance of lightpaths with poor QoT or rejection of lightpaths
with acceptable QoT may ensue. We present a novel IA-RWA
algorithm that not only consider the impact of physical impair-
ments on RWA decisions, but also, for the first time, accounts
for inaccuracy of the QoT estimators. The performance of our
algorithm is compared with algorithms selected from the recent
literature. All algorithms are evaluated through simulati ons in a
realistic scenario. Our proposed novel algorithm outperforms the
selected algorithms in terms of blocking rate and also the amount
of required resource for achieving zero percent blocking rate
under similar assumptions. In addition we show that accounting
for QoT estimation inaccuracy changes the performance of the
proposed IA-RWA substantially, and hence that QoT estimator
inaccuracies are an important design parameter in transparent
optical networking.

Index Terms—Impairment aware RWA, physical layer impair-
ments, quality of transmission, estimation inaccuracy.

I. I NTRODUCTION

Next generation optical networks are evolving from
opaque to optical-bypass (translucent) and eventually to

transparent (all-optical) networks [1], [2]. The transparency in
next generation optical networks enables signals to propagate
from source to destination purely in the optical domain,
eliminating current expensive electronic regenerators. This
evolution paves the way for the construction of the required
infrastructure for emerging data-intensive applicationsin a
cost-effective manner [3].

Despite those advantages, transparency in all-optical net-
works also introduces new issues in relation to the lack of
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Catalunya (UPC), C/Jordi Girona, 1-3. 08034 Barcelona, Catalonia,
Spain (phone: +30-210-6682792; fax: +30-210-6682729; e-mail:
{siamak,marianna,careglio,pareta}@ac.upc.edu).

Yvan Pointurier and Ioannis Tomkos are with Athens Information Tech-
nology, 19.5km Markopoulo Ave., Peania 19002, Athens, Greece (e-mail:
yvan@ieee.org; itom@ait.edu.gr).

electrical conversion as well as the still immature all-optical
regeneration (e.g., 2R, 3R) technology. Since optical signals
go directly through all-optical nodes (instead of costly elec-
trical regenerators), physical layer impairments accumulate
along a lightpath and also vary dynamically with the network
state or configuration, potentially causing signals’ quality of
transmission (QoT), measured for instance in terms of Bit-
Error Rate (BER), to drop beyond a predefined threshold. One
way to mitigate physical impairments at network operation
time is to use network-layer mechanisms, such as online
Routing and Wavelength Assignment (RWA) algorithms, to
assign lightpaths (a lightpath is the combination of a route
and a wavelength) accounting for physical layer parameters,
leading to the design of Impairment Aware RWA (IA-RWA)
algorithms, which have recently received a lot of attention
from the research community [4].

One of the key building blocks in IA-RWA algorithms is a
QoT estimator, which is a combination of theoretical models
and/or interpolations of measurements, typically performed
offline (in the lab, before the networks are deployed), but
also possibly online. A practical QoT estimator should be fast
to ensure that lightpaths can be established in real time. In
addition, models by nature cannot capture all effects actually
present in physical systems, resulting in QoT estimation in-
accuracies. Inaccuracies are inevitable yet undesirable for two
reasons: on the one hand, if the QoT of a candidate lightpath
is estimated as acceptable while it is not, then a lightpath is
established while it should not. Eventually a monitor (suchas a
BER monitor integrated in the receiver) will catch the problem
and the lightpath will be torn down and re-establishment will
be requested, wasting resources used by the failed lightpath,
and time. On the other hand, if the QoT of a candidate
lightpath is estimated as unacceptable while QoT is actually
acceptable, then the IA-RWA algorithm will have to seek a new
candidate for the lightpath, likely less optimal (e.g., consuming
more resources) than the first candidate, hence again wasting
resources and time. A practical IA-RWA algorithm should
mitigate the inaccuracies due to QoT estimation in order
to eliminate the occurrence of both cases to the maximum
possible extent. Note that the problem of incorporating QoT
estimation inaccuracies in the dimensioning of transparent
optical networks was tackled in [5], where the authors studied
the amount of regeneration devices needed to compensate for
the additional QoT margin incurred by the inaccuracy of a
QoT (Q-factor) estimator; in [5] the problem of the impact of
the RWA technique on the network dimensioning was left out.
In this paper we propose to address such inaccuracies directly
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within the decision steps of the IA-RWA algorithm in order
to mitigate them and eliminate the occurrences of both cases
described above to the maximum possible extent.

In this work, we present a novel IA-RWA algorithm that
considers the availability of Optical Impairment Monitoring
(OIM) or Optical Performance Monitoring (OPM) [6] equip-
ment to alleviate the inaccuracy of the QoT estimations. These
monitoring equipments can be deployed at the end of the
selected unidirectional fiber links to monitor the impairment
or performance of the lightpaths, which are terminating at the
end of those links. However, the optimum monitor deployment
is not the topic of this work. Assuming a given deployment,
monitor equipment availability is mapped to QoT accuracy
and is taken into account within a multi-constraint framework
as a new constraint (the other constraint being a traditional
QoT-related one), at the routing step of a proposed Routing
and Wavelength Assignment heuristic. Doing so ensures that
routes where monitors are available are preferred over routes
with less monitoring capability, consequently increasingthe
accuracy of the QoT estimator and reducing the aforemen-
tioned issues associated with inaccurate QoT estimators. We
show that our novel heuristic algorithm, which we call “Online
Rahyab1”, outperforms state-of-the-art IA-RWA algorithms
under the same assumptions for common metrics such as
blocking rate and resource utilization. The main contribution
of this work is the multi-constraint framework to account for
the inaccuracies of the QoT estimations and its integration
in an IA-RWA algorithm that consider multiple paths for its
routing decisions.

This paper is organized as follows. After this introduction,
in Section II a physical layer performance evaluator (i.e.,QoT
estimator or “Q-Tool”) is introduced. State-of-the-art online
IA-RWA algorithms, against which our novel IA-RWA is
evaluated, are summarized in Section III. Our novel online IA-
RWA algorithm is presented in Section IV. Section V covers
the assumptions, simulations parameters and results of our
comparative studies. Conclusions are drawn in Section VI.

II. PHYSICAL LAYER PERFORMANCEEVALUATION

In the context of transparent optical networks, impairments
can be categorized into “static” and “dynamic” impairments.
Static impairments are topology-dependent: they do not de-
pend on the routing state of the network. In particular, we
account for the following static impairments in this work:
Amplifier Spontaneous Emission (ASE) noise, filter concate-
nation, and Polarization Mode Dispersion (PMD). Dynamic
impairments depend on the presence and characteristics of
other lightpaths established in the network. We account forthe
following dynamic impairments in this work: node crosstalk,
originating from signal leaks at nodes, and nonlinear ef-
fects: Cross Phase Modulation and Four Wave Mixing (XPM,
FWM).

A. QoT Estimator (Q-Tool)

To assess the QoT of a lightpath, we use a “Q-Tool” which is
able to compute the so-called “Q factor” for a lightpath given

1Rahyab means “path finder” in Persian.

the network topology, physical characteristics, and network
state (i.e., what lightpaths are already present in the network).
The Q factor for a lightpath is a QoT indicator that is related
to the signal’s Bit-Error Rate (BER) using, for an On-Off
modulated signal:

BER =
1

2
erfc

(

Q
√
2

)

, (1)

where the Q factor is defined as [7]:

Q =
P1 − P0

σ1 + σ0

. (2)

In (2), P1 and P0 are the means of the distributions (as-
sumed to be Gaussian) of the received samples corresponding
to the sent “1” and “0” bits, andσ1 andσ0 are the respective
standard deviations. In the case of systems with inter symbol
interference (ISI), BER is dominated by those symbols that
close the eye most, rather than the average power difference
P1−P0 [8]; hence, calling the eye opening after transmission
asPop, the Q-Tool actually computes the following estimate:

Q̂ = δPMD

Pop

σ1 + σ0

. (3)

As suggested in [9], we model filter concatenation im-
pairment as a penalty on the eye opening, yielding the eye
openingPop. The PMD effect is modeled as a penalty on the
Q factor as in [10] through the multiplicative factorδPMD.
Other impairments are accounted for through noise variances.
In particular let:

σ2

1 = σ2

1,ASE + σ2

1,XT + σ2

1,XPM + σ2

FWM, (4)

σ2

0 = σ2

0,ASE + σ2

0,XT. (5)

ASE noise is modeled as a noise variance according to [7]
and contributes to bothσ1 and σ0 via σ2

1,ASE
and σ2

0,ASE
,

respectively. SincePop, σ1,ASE and σ0,ASE only depend on
the network topology and physical parameters (as doesδPMD),
they can be pre-computed for fast Q factor estimation. We also
model node crosstalk as a noise variance affecting “1” and “0”
bits according to [11] via the quantitiesσ2

1,XT
andσ2

0,XT
. The

XPM effect is modeled according to [12] and accounted for
within σ2

1 via σ2
1,XPM

. Similarly the FWM effect is modeled
according to [13], [14] and is accounted for withinσ2

1 via
σ2
FWM

. Since node crosstalk, XPM and FWM are dynamic
effects that depend on the network state,σ2

1,XT
, σ2

0,XT
, σ2

1,XPM

and σ2
FWM

have to be computed on-line by the Q factor
estimator. We refer the reader to [7], [9]–[14] for additional
details about the modeling of each physical impairment.

B. Inaccuracy of Q-Tool

Practical QoT estimators including our Q-Tool are combi-
nations of analytical models and/or interpolations of measure-
ments and simulations. For instance in [15] the authors propose
a method to measure more accurately OSNR on transmission
lines at the expense of the deployment of additional power
monitors. However, practical QoT estimators should be fastin
order to support quick lightpath establishment. This is particu-
larly required in highly dynamic transparent optical networks.
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Fig. 1. Number of established lightpaths until the occurrence of the first
QoT blocking as a function of available wavelengths per fiber, assuming
QEM=0.5 dB and for two extreme values ofη.

As mentioned above the errors resulting from incorrect QoT
estimation have a direct impact on lightpath establishment
decisions, yet physical models are by nature imperfect and
optimization for speed is further detrimental to their intrinsic
accuracy. Utilizing the optical performance and/or impairment
monitoring devices is a good approach to bypass some ana-
lytical models and alleviate the inaccuracy of QoT estimation
process. For instance a Q factor monitor, can simply replace
the whole Q-Tool and provide the precise Q factor value of a
lightpath. We formalize here the trade-off between availability
of monitoring information, and monitoring accuracy.

In our framework a lightpath with estimated Q-factorQ̂ by
the Q-Tool is established if and only if̂Q is larger than a given
thresholdQth (e.g.,Qth = 15.5 dB to achieve BER=10−9

without Forward Error Correction, FEC), to which we add a
marginηQEM (0 ≤ η ≤ 1):

Q̂ > Qth + ηQEM . (6)

In (6), theQEM parameter is the maximum error (inaccu-
racy) that the Q-Tool estimator can introduce andη is a factor
that depends on the availability of the additional monitoring
information.

As an illustrative example, assume that a network operator
is running a network and injects traffic until sustaining a first
call blocking. This call blocking can be due to either lack of
resources (wavelength blocking) or QoT insufficiency (QoT
blocking). Note that in the following experiment, the available
channels per fiber are selected in a way that QoT blocking is
the only source of blocking of demands. This is done for a 14-
node national network similar to the one operated by Deutsche
Telekom (see Section V for full details). The number of
established lightpaths is given forQth=15.5 dB,QEM=0.5 dB,
and for the two extreme values ofη: η=0, corresponding to the
case where we have full confidence in the Q-factor estimator
and assume it returns the true Q factor of a lightpath (possibly
because some monitors are deployed, that greatly improve the

Q-Tool accuracy), andη=1, corresponding to the case with
maximum inaccuracy of the Q-Tool. It is seen in Fig. 1 that a
higher confidence in the estimate of Q or, alternatively, a lower
value of η, permits to postpone the point in times when the
first blocking occurs; for a system with 10 channels we can
accommodate 40% more lightpaths if we have high confidence
in the Q estimates (η=0), compared with the case where we do
not (η=1). However this difference is reduced to 2% when the
number of channels per fiber is increased to 22. The reason
for this reduction is that the availability of more wavelengths
increases the chance of finding a lightpath that satisfies the
(higher) required threshold. This framework enables us to
place some constraint on the adaptive error factorη in order
to force the routing engine to find paths with more accurate
QoT estimation. We observe that even a small inaccuracy in
QoT estimation (e.g., 0.5 dB) changes the performance of the
call admission procedure. In the example above,η is set to a
fixed value; however, it is clear from the example that gains in
call admission performance are expected ifη can be lowered.
We propose to account for OIM/OPM availability information
dynamically, on a per-route basis, in order to compute the
true value ofη for each lightpath, and hence to reduce the
QoT blockings due to too high margin on̂Q whenever that
is possible using an appropriate, novel IA-RWA algorithm.
Before we do so, we review some of the state-of-the-art IA-
RWA algorithms proposed in the literature.

III. O NLINE IA-RWA A LGORITHMS

As we mentioned previously, much effort has been devoted
to the topic of IA-RWA in the past few years; in [4] we propose
a comprehensive survey of such algorithms, and here we
simply use the conclusions of [4] to choose suitable candidates
to compare our new IA-RWA algorithm with. Note that no IA-
RWA so far has accounted for Q factor estimation inaccuracy,
and hence the algorithms presented here assume a constant
margin ηQEM . The following two algorithms were selected
because of their performance in terms of average blocking rate
in fully transparent optical networks.

The K-SP-Q algorithm is described in [16]. This algo-
rithm selects the shortest available route among theK routes
between each source and destination pair, which are pre-
computed as theK shortest paths; the First Fit wavelength
assignment scheme is utilized; and finally this algorithm
checks the quality of transmission (QoT) value.

The MmQ (Max Min Q-factor) algorithm is described
in [17]. In MmQ algorithm for each wavelength, a route from
source to destination is computed subject to the wavelength
continuity constraint. Then, for each of the computed light-
paths, the QoT values of that candidate lightpath and already
established lightpaths are computed. Lightpaths with value of
Q lower than a given threshold, or lightpaths that interfere
with other lightpaths so as to produce a value ofQ for
them lower than the threshold are discarded. From the list
of previously computed lightpaths that are not discarded, the
one with the highest QoT value is finally selected. In addition
to low blocking, the algorithm has some desirable properties
such as high fairness between short and long lightpaths.
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In next section we propose our novel online IA-RWA
algorithm.

IV. ONLINE RAHYAB

The main idea behind the online Rahyab algorithm is to
design a multi-constraint IA-RWA algorithm that considers
QoT accuracy through optical monitor (i.e., OIM/OPM) avail-
ability information in routing decisions, in order to alleviate
the inaccuracy of the QoT estimator (here, Q-Tool). Online
Rahyab selects the routes in a way to compensate for the in-
accuracy of the QoT estimation (by selecting routes, which are
equipped with OIM/OPM devices) and therefore to increase
the chance of finding a lightpath with overall acceptable QoT
metric. This will pave the way for lower QoT blocking. Our
multi-constraint IA-RWA maps several constraints, including
QoT itself, and QoT inaccuracy, to a single metric using a
technique proposed in a more general context [18], which we
detail it in Section IV-A; we then use this metric in a novel
IA-RWA algorithm, which we present in Section IV-B.

A. Multi-constraint paths

Multi-constraint Path (MCP) computation algorithms have
been used for QoS routing problem in general wired net-
works [19]–[22], but to the best of our knowledge have been
never applied for solving the online IA-RWA problem in
optical networks. Finding paths subject to two or more cost pa-
rameters/constraints is an NP-complete problem in the general
case [19]. As a result, most proposed algorithms concentrate
on solving the MCP problem with polynomial or pseudo-
polynomial time heuristics. In particular one technique consists
in the reduction of the original MCP to a single-constraint path
problem, using an appropriate mapping between the original
multiple constraints and the single constraint effectively used
in the routing step. This is the approach that we follow in this
work. In particular, we use the same mapping as in [18] in
our RWA algorithm. Before we describe the RWA algorithm
itself, we present the multi- to single-constraint mappingused
throughout this work.

The MCP problem can be formulated as follows; consider
a network topologyG = (V,E) with nodesV and edgesE,
a source nodeS and a destination nodeD. Also assume
that each linke ∈ E is characterized byM additive non-
negative weights,wm(e),m = 1, 2, . . . ,M . Given constraints
Cm,m = 1, 2, . . . ,M , the MCP problem is to find a pathp
such that:

∑

e∈p

wm(e) < Cm;m = 1, 2, . . . ,M. (7)

In [18] the following mapping between the multiple edge costs
wm(e) and a single cost metricSMMd(e) is introduced:

SMMd(e) = µd(e) [∆d(e) + ǫ] ; 0 ≤ ǫ ≤ 1, (8)

where

µd(e) =
1

M

M
∑

m=1

(

wm(e)

Cm

)d

; d ≥ 1, (9)

∆d(e) =

M
∑

m=1

[

(

wm(e)

Cm

)d

− µd(e)

]2

. (10)

The single metric that we are going to use in our framework
is defined in (8). This relation considers the impact of both
mean and variance of the normalized weights (to the power
d, which is a parameter) of the links in the single mixed
metric (SMM). The contribution of the mean (as defined
in (9)) with respect to the variance is controlled byǫ, another
parameter. This single mixed metric or cost is shown in [18]
to have desirable properties with respect to the MCP problem:
in particular, for the 2-constraints problem (M=2) it can be
shown that SMM can be used in conjunction with a standard
shortest path algorithm to select paths that exactly satisfy the
constraints (7); for problems with more constraints (M > 2),
exact satisfaction (7) is not feasible, but can be performedwith
high probability using SMM and a shortest path algorithm.

B. Description of online Rahyab

The novelty of our approach and framework compared to the
one reported in [18] is the exploitation of the single-cost metric
for k-shortest path and/or diverse k-shortest path algorithms.
Indeed, while in [18] the Dijkstra algorithm is modified to find
a single path between source and destination, we are using
here the MCP framework based on a single mixed metric for
computing a set of multiple candidate paths between source
and destination nodes, for any dynamic demand request. Fur-
thermore, we can exploit this MCP engine for diverse routing
(e.g., the Bhandari algorithm [23]) for protection purposes
(e.g., 1+1) or generic k-shortest path algorithms. In online
Rahyab algorithm we are considering two metrics as the link
cost parameterswi(e): lightpath length, and Q-Tool inaccuracy
margin. Note that the framework can easily be extended to
include various other constraints, such as for instance the
energy consumption per link, to yield an energy efficient IA-
RWA.

Lightpath lengths: Capping the length of a lightpath is
a quick and easy way to disregard candidate lightpaths with
poor QoT; indeed, considering only static impairments, i.e.
impairments that donot depend on the network state: ASE
noise, PMD and filter concatenation, one can compute the
maximum lengthLmax of a lightpath such that the QoT
constraint is met. Lightpaths longer thanLmax are known
for sure to have an unacceptable QoT; note that the converse
does not hold, as lightpaths shorter thanLmax may also have
an unacceptable QoT when dynamic effects (XPM, FWM)
are accounted for. The main idea here is to consider the
static physical impairments inside the multi-constraint path
computation engine in order to prune out paths that do not
satisfy the minimum QoT requirements (as far as the static
physical impairments are concerned). Hence, the first metric
we consider here is the length, that is,w1(e) = ℓ(e) where
ℓ(e) is the length of linke, and the associated constraint is:

∑

e∈p

ℓ(e) < Lmax, (11)

whereLmax is a precomputed constant andp is a lightpath.
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QoT estimator inaccuracy: The second metric we con-
sider is the Q-Tool inaccuracy. Define theoptical monitor
availability vector as a binary vector that records whether
a particular monitor is available on a unidirectional link or
not, where eachmk is associated to the presence (mk=1) or
absence (mk=0) of a monitor (for instance, OSNR monitor,
PMD monitor, residual chromatic dispersion monitor, channel
monitor, etc.) on a given link. In order to map the monitor
availability vector of link e to a single value we define the
functionΘ as follows:

Θ(e) =
n
∑

k=1

ǫk(e)(1 −mk(e)). (12)

In (12) the sum is indexed by the monitors and we assume
that we can usen different monitors for each linke. The
parameterǫi determines the importance of theith monitor.
More specifically, considering the estimated Q-factorQ̂ as a
random variable that differs from the true Q-factor of a light-
path depending on what monitoring information is availableto
perform the estimation, we interpretΘ(e) as the variance of̂Q
due to the uncertainty of parameters on linke, and eachǫi(e)
as the contribution to the variance of̂Q due to the absence
of monitor i on link e. We can then re-interpret the adaptive
factor η for a lightpathp introduced in (6) as:

η(p) =

∑

e∈p

Θ(e)

Θmax(p)
, (13)

where
∑

e∈p

Θ(e) is the variance ofQ̂ accounting for uncer-

tainties stemming from the presence/absence of monitors on
each link of the considered lightpath, andΘmax(p) is the
maximum variance for the lightpath. This maximum uncer-
tainty corresponds to the absence of monitors on a lightpath.
The constraint corresponding to this QoT uncertainty metric
is then:

η(p) < ηmax, (14)

whereηmax drives the maximum uncertainty (ηmaxQEM )
that the network manager is willing to tolerate in the network,
or, equivalently, the minimum amount of monitoring that must
be present on a path for a lightpath to be established.

We now describe the complete IA-RWA, “Online Rahyab”.
In online Rahyab each link is associated with a single weight
we, which mixes the two metrics “link length” and “QoT esti-
mator uncertainty”, using (8). Upon the arrival of a connection
request between a source and a destination node, the current
network topology is decomposed intoW layers (wavelength
planes), whereW is the total number of channels in each
fiber. For each wavelength plane, we compute a predefined
numberK of candidate paths from source to destination using
a shortest path algorithm with the two metricsw1(e) = ℓ(e)
(length) andw2(e) = Θ(e) (QoT estimator uncertainty).
Therefore, the multi-constraint routing engine is exploited for
finding paths (denoted bycandidate lightpaths) that satisfy
multiple constraints. Doing so separately for each wavelength
ensures that the candidate lightpaths also conform to the wave-
length continuity constraint. Oncecandidate lightpaths are
determined, we construct another set of lightpaths, which we
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Fig. 2. Flow diagram of online Rahyab.

call theusable lightpaths: we temporarily add each candidate
lightpath to the currently established lightpaths in the network
and we compute the impact of this addition on the QoT of
each lightpath already established. If all QoT values are above
a certain threshold the candidate lightpath under consideration
will be moved to theusable lightpath set. In this step, we use
the Q-Tool that considers all physical impairments as defined
in Section II. The final step of our algorithm is to select
the best usable lightpath. In order to find this lightpath, we
select the lightpath that introduces the minimum impact on
the currently established lightpaths (as suggested in [17]). We
exploit the QoT estimator (i.e., “Q-Tool”) to compute theQoT
margin of each candidate route (with respect to the minimum
allowed Q factor) on the currently established lightpaths:

Qmargin = min (Q−Qth − η̂QEM ) . (15)

The margin is computed by subtractingQth + η̂QEM from
the Q factors of all active lightpaths (including the candidate
lightpath) and finding the minimum value, as expressed in (15),
whereQ is a vector that includes the Q factors of all lightpaths
established in the network and̂η is a vector that includes the
value for the inaccuracy factor (η) of each established lightpath
using equation (13). The next step is to select a lightpath from
theusable lightpath set. We consider a heuristic, by which the
lightpath with highest non-negativeQmargin is selected. In the
case where theusable set is empty, the demand is blocked. The
flow chart of the online Rahyab algorithm is depicted in Fig. 2.

V. COMPARATIVE STUDIES

In order to provide a fair comparison between the algo-
rithms, we performed simulations with controlled and identi-
cal input parameters and an identical impairment estimation
module (Q-Tool). The parameters and the set of experiments
were chosen so as to obtain a broad range of results that
would reveal the relative performance of the algorithms and
their applicability under diverse scenarios. In addition to online
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Rahyab, we also evaluated the performance of the K-SP-Q and
MmQ algorithms, which we described in Section III.

A. Assumptions and Simulation Parameters

The network topology in our simulation studies, DTNet was
provided by Deutsche Telekom (DT) and is similar to the real
national network operated by DT. This network has 14 nodes
and 23 bidirectional links, with an average node degree
of 3.29. The line rate in this network is assumed to be 10 Gbps.
We assume a heterogeneous network topology in which the
node and link architectures have different impact and contribu-
tions on the physical layer impairments. We also assumed that
pre-dispersion compensation of 400 ps/nm is performed in the
links. The Standard Single Mode Fiber (SSMF) length in each
span is set to 100 km, followed by a Dispersion Compensation
Fiber (DCF) that under-compensates the dispersion of the
preceding SSMF by a value of 30 ps/nm/km. At the end of
each link the accumulated dispersion is fully compensated.It
was assumed that the SSMF fibers have a dispersion parameter
of 17 ps/nm/km and attenuation of 0.25 dB/km. The DCF
segments have a dispersion parameter of 80 ps/nm/km and
an attenuation of 0.5 dB/km. The input power to the links
is -4 dBm and 3 dBm per channel in the DCF and SSMF
fibers respectively. The channel spacing is set to 50 GHz. The
noise figure of the amplifiers that compensate for the loss of
the preceding fiber segment is set to NF≈6 dB, with small
variations. The signal-to-crosstalk ratio in nodes is set around
-32 dB, with small variations in each node. The threshold value
for computing the impact on Q factor (i.e.,Qth) is 15.5 dB,
corresponding to BER=10−9 without FEC.

In Fig. 3, we depict the Q factor value for all 10 shortest
paths between all possible pairs of the nodes in the network,
totaling 1820 lightpaths. Without considering the impact of
other established lightpaths, the maximum optical reach is
about 1500 km, hence we setLmax=1500 km in the constraint
(11). We also setηmax=0.9 in constraint (14).ηmax is a
parameter and determines the maximum uncertainty that the
network operator is willing to tolerate. The lower the valueof
this parameter, the higher chance of finding a feasible lightpath
(i.e., the lower the impact of QoT estimation inaccuracy).

Connection requests (dynamic demand set) are generated
according to a Poisson process with rateλ (requests/time unit).
The source and destination of a connection are uniformly
chosen among the nodes of the network. The duration of a
connection is given by an exponential random variable with
average1/µ. We varied the ratioλ/µ which measures, in
Erlangs, the total offered load to the network. Connection
requests arrive one by one, and should be served upon their
arrival. This means that the algorithm cannot wait to collect
more than one connection and serve them jointly. In each
experiment, 1000 connections per each pair of nodes were
created and served. In practical applications, the number of
available channels per fiber (W) is in the range of 80 to 160
channels. However, the focus of this work is to address the
inaccuracy of the QoT estimation. The reported results in this
work are for a proof of concept and we do not expect major
difference in results if the value of W is increased.
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Fig. 3. Q-Factor value vs. lightpath length (Qth=15.5 dB).

In the K-SP-Q algorithm, the value ofK is set to 5. In the
online Rahyab algorithm, we set the value ofd andǫ to 1 and
0.5 respectively in order to compute the single mixed cost for
links. As indicated in [18] these parameters are good choices
for the performance of our MCP engine. Rahyab algorithm
sets the value ofK to 5 for computing candidate routes.

B. Results

In order to evaluate the performance of different algorithms
we considered the following performance metrics: the blocking
rate for each demand set is the ratio of the number of blocked
lightpath requests over the total number of requested lightpaths
(we report this metric for both different values of load and
also number of channels per link), the number of required
wavelengths in order to achieve blocking rate lower than
5× 10−6 for a given demand set, and the admissible load to
the network to achieve 1% blocking rate for different monitor
deployment scenarios. These metrics are good indicators for
network designers in order to perform network planning and
dimensioning.

Fig. 4 depicts the performance of K-SP-Q, MmQ and our
proposed online Rahyab algorithm (“Rahyab-100%”). In our
experiments we evaluated the performance of the algorithms
assuming that QoT blocking is possible and as a result we
are interested in minimizing its occurrence. Note that there
is no QoT inaccuracy consideration in K-SP-Q and MmQ
and therefore their performance should be compared with
Rahyab with full monitor deployment (“Rahyab-100%”) that
completely removes the inaccuracy of QoT estimation. The
results are presented as a function of the number of channels
per fiber, for a fixed network load (100 Erlangs).

In order to reveal the impact of the monitors on the perfor-
mance of online Rahyab algorithm, we varied the deployment
rate of monitors in the network between 0% and 100%. The re-
sults are depicted in Fig. 5. We also included the performance
of MmQ and K-SP-Q algorithms for comparison purposes. The
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Fig. 4. Blocking rate vs. number of channels per link,Load=100 Erlangs.
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Fig. 5. Blocking rate vs. number of channels per link,Load=100 Erlangs.

five variations of the Rahyab algorithm are denoted as Rahyab-
0% to Rahyab-100% which correspond respectively to no or
full OIM/OPM deployment in the network. For the case of
0% monitor deployment, we have assumed thatQEM=1 dB
as also considered in [5]. We can observe that when there is
no inaccuracy in QoT estimation (100% monitor deployment),
the online Rahyab algorithm performs better than all other
algorithms. Besides, by increasing the number of channels per
fiber the blocking rate is decreased, since the chance of finding
a route and available wavelength that satisfies the required
QoT threshold increases. The performance of MmQ algorithm
that does not consider the inaccuracy of QoT estimation is
almost similar to the performance of the Rahyab algorithm
without any monitor deployment, i.e. 0% monitor deployment.
The reason why online Rahyab algorithm performs better than
MmQ is mainly due to the availability of additional route
options in online Rahyab compared to single shortest path in
the MmQ algorithm. The K-SP-Q algorithm does not perform

80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Load (Erlang)

B
lo

ck
in

g 
ra

te

 

 
K−SP−Q
MmQ
Rahyab−0%
Rahyab−25%
Rahyab−50%
Rahyab−75%
Rahyab−100%

Fig. 6. Blocking rate vs. load (W=20).

better, mainly due to the inability to properly incorporatethe
impact of physical impairments in its routing decisions.

By increasing the amount of OIM/OPM monitoring equip-
ment, the online Rahyab MCP routing engine finds routes that
compensate for the inaccuracy of the QoT estimation. which
is why the blocking rate decreases when the optical monitor
deployment rate increases. However the difference between
various deployment scenarios is more pronounced for lower
numbers of channel per fiber. Indeed, by increasing the number
of channels, finding proper route and available wavelength
that satisfies the QoT requirement becomes easier. When the
number of channels per link is set to 10, Rahyab-100% (with
support of full OIM/OPM deployment) performs 51% better
than the same algorithm in absence of any OIM/OPM monitor
deployment (i.e. Rahyab-0%).

Fig. 6 depicts the performance of the selected algorithms
for different values of the network load and a fixed number of
channels per link (i.e.,W=20). The increase of the network
load, as expected, deteriorates the performance of all algo-
rithms, just as the performance of the algorithms deteriorates
when the number of wavelengths is decreased. Among studied
algorithms, Rahyab and MmQ perform better than K-SP-Q
algorithm. In this figure we included five variations of the
Rahyab algorithm to also consider the impact of OIM/OPM
deployment. By increasing the number of deployed monitors,
the Rahyab MCP engine finds routes with more available mon-
itors that lead to lower inaccuracy of QoT estimation. Note that
we only consider the inaccuracy of QoT estimation for online
Rahyab algorithm (except Rahyab-100%) and other algorithms
exploit a Q-Tool without any inaccuracy (i.e.QEM=0 dB). At
the maximum load (200 Erlangs), the online Rahyab with full
monitor deployment performs 53% better that online Rahyab
without any monitor deployment.

By increasing the percentage of the OIM/OPM deployment
in the network the Rahyab MCP engine exploits the routes
with more available monitors and reduces QoT inaccuracy
and therefore the number of lightpaths that are rejected due
to the inaccuracy of the QoT estimation is decreased. We
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Fig. 7. Number of required W for 0% blocking vs. load.

also observe that the MmQ algorithm that does not consider
the inaccuracy of QoT estimation performs similar to Rahyab
without any OIM/OPM monitor deployment (Rahyab-0%).

The other performance metric of our comparative study is
the number of required channels per link in order to achieve a
blocking rate less than5× 10−6 for each traffic load. For this
performance metric we have selected MmQ and two variations
of the Rahyab algorithm. As before the MmQ algorithm
does not consider the inaccuracy of the QoT estimation. As
depicted in Fig. 7, online Rahyab — which utilizes the monitor
availability information — is able to accommodate more
traffic compared with MmQ and Rahyab without OIM/OPM
deployment, for a given number of channels per link.

Fig. 8 depicts the percentage of the lightpaths that are
established along the shortest path between the source and
destination nodes. Since the Rahyab MCP routing engine com-
putes multiple candidate routes it is able to find many possible
candidates and when the number of available wavelengths are
few, more diverse routes are selected that eventually fulfill the
QoT requirement. When the number of channels increases, the
percentage of the lightpaths that are along the shortest paths
also increase. MmQ only tries the shortest path routes. K-SP-
Q also establishes most of the lightpaths along the shortest
path. We have to note that this percentage only includes the
lightpaths that were feasible and since the blocking rate inK-
SP-Q is higher than other selected algorithms, it has not been
able to find other candidate paths. The MmQ algorithm how-
ever utilizes an adaptive wavelength assignment and therefore
finds the shortest path that does not introduce any impact on
the currently established lightpaths. This result indicates that
it is possible to find routes that are not necessarily the shortest
path, while achieving the required QoT.

In Fig. 9, we report the maximum admissible load to achieve
a blocking rate of 1%, when the amount of monitoring equip-
ment deployment varies. With MmQ, monitoring deployment
is only accounted for in the QoT condition via a varying
Qth, i.e. Qth=15.5 dB for full monitoring deployment and
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Fig. 9. Admissible load to achieve 1% blocking rate.

Qth=16.5 dB for no monitoring deployment. Rahyab integrates
monitoring deployment within the RWA decision and therefore
benefits from the additional monitoring deployment better
than MmQ, as can be seen with the increasing gap between
the MmQ and Rahyab curves. When there is no monitor
deployment in the network, the gap is amounted to only
6%, while by increasing the rate of monitor deplyment the
performance of Rahyab algorithm became better than MmQ
algorithm by 11%. We have also enhanced the MmQ algorithm
to consider the monitor deployment rate in its RWA decisions
in the same way that Rahyab considers it, and as it can be
observed the “enhanced” MmQ algorithm performs better than
MmQ algorithm. However since the MmQ algorithm only
computes a single path between the source and destination,
its performance still remains lower than Rahyab algorithm.

In order to evaluate the time complexity and scalability of
the algorithms we defined the relative average running time
performance metric. This metric is the ratio of the average
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Fig. 10. Relative average running time per connection for K-SP-Q, MmQ
and Rahyab algorithm.

running time of a given algorithm for a given load (per
connection establishment) over the average running time of
the same algorithm for the reference load (i.e., Load=200
Erlangs). This relative metric removes the dependency of
the running time of an algorithm to the performance of a
particular hardware/software platform. Fig. 10 depicts the
running time performance of K-SP-Q, MmQ and Rahyab
(with 100% monitor deployment) algorithms. The absolute
running time of K-SP-Q, MmQ and Rahyab were 48.43,
253.23, and 552.86 seconds respectively for the reference
load. MmQ and Rahyab algorithms intensively use the QoT
estimator. Given the complexity of the analytical models inside
the Q-Tool the running time of Rahyab is much higher than
other selected algorithms. For a single unprotected demand,
the maximum number of Q-Tool invocation is equal to the
number of candidate paths in each wavelength layer (i.e.,
k × W in which k is the number of candidate paths and
W is the number of wavelengths per link). In this work, we
have used a software-based Q-Tool, which is not optimized
for QoT computation. In practical applications, it is possible
to utilize the hardware (e.g., FPGA) accelerated QoT estimator
to achieve better computation time.

VI. CONCLUSIONS

We have presented a novel online IA-RWA algorithm,
called “online Rahyab” that considers the availability of
the OIM/OPM monitors in the network within the routing
and wavelength assignment process. Indeed, a fundamen-
tal aspect for an IA-RWA strategy in order to be actually
implemented is to utilize Optical Impairment/Performance
Monitoring (OIM/OPM) for evaluation of signal quality. In
addition to the exploitation of monitoring information in IA-
RWA engines, it is also useful to incorporate the availability
of OIM/OPM monitors in QoT estimations. We showed that
for a system with 10 channels per fiber, we can accommodate
40% more lightpahts if we have high confidence in the Q

estimations compared with the case where we do not have
high accuracy. We compared the performance of our proposed
algorithm with two other algorithms that we have selected
from state-of-the-art IA-RWA algorithms. Our simulation re-
sults indicates that utilizing the optical monitors in the network
can improve the performance of the IA-RWA algorithms by
roughly more than 50% for high traffic load or limited number
of channels. We demonstrated that the admissible load for
a given blocking rate is 11% higher than the one which is
allocated by an algorithm that does not consider the OIM/OPM
deployment in the network. We have also demonstrated that,
due to the important impact of QoT estimator inaccuracies on
network dimensioning (here, in terms of blocking rate), RWA
algorithms need to incorporate those inaccuracies in orderto
appropriately reflect the actual behavior of monitored trans-
parent optical networks. The online Rahyab algorithm can be
considered as building block of an impairment aware control
plane deployment. The control plane integration schemes (i.e.,
centralized or distributed) and related issues (e.g., scheduling
and advertisement of monitoring information) are beyond the
scope of this work and will be investigated in future works.
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